Environmental Effects on Honey Production

James Stanley

This research has been undertaken with the purpose of raising awareness to the public in the United States of how important bees are in the United States Economy and in the world. Bees are relevant because they are the major pollinators of crops and wild plants and humans need them for survival. Originally, I intended to develop an equation that would show the value of honey bees in the U.S. economy, however, upon doing research, I found an economic thesis that precisely tried to do what I was researching about. I contacted the author and he gave me permission to use his research and offered to help me. Thus, I developed an equation to help determine the value of honey bees using his previous equation and added new variables that I thought were being omitted. The equation developed is ideal but the problem is that there is no data available for the variables needed. Because of this, I decided to stay in the realm of honey bees but refocus my research on how different environmental factors affect honey production. This, in a way, could still indicate in a very small scale, how important honey bees are and by what they are affected. Because of my research on my previous topic, I already had some data gathered which was ideal for my new model.

The data gathered comes from government research and statistics. My sources were United Stated Department of Agriculture (USDA), the National Agricultural Statistics Service (NASS), the Agricultural Statistics Board, and World Bank. I was looking for data on specific crops honey bees pollinate and some of the causes for colony collapse disorder. My theory was that the more crops the bees pollinate, the more honey production there will be considering many causes for colony collapse disorder such as carbon dioxide emissions per year and the use of insecticides, herbicides, fungicides, and other pesticides in the United States.

For my signs, I was expecting all crops to have a positive sign and herbicide, insecticide, fungicide, other pesticides, and CO² emissions to be negative. My reasoning behind these hypotheses is that all crops should have a positive effect on honey production, the more crops available, the more pollen the bees can extract and produce honey. For the negative signs, all of them are causes of colony collapse disorder which kills bees. The lower the bee population, the less honey is produced per year. Before determining which crops I would use, I had a list of 18 of the major crops that bees pollinate and I decided to do a correlation analysis to see which ones where highly correlated. I determined that any crop that had a Pearson Correlation higher than 0.500, I would exclude from my model. Table 1.1, found in the Appendix, shows the results and the boxes in yellow indicate all the crops that are highly correlated. Once the correlation analysis was finished, I decided to know if there was any correlation between insecticides, herbicides, fungicides, and other pesticides used in the United States and the results shown in Table 1.2 below demonstrate that the only ones correlated were fungicide and other pesticides.

Table 1.2

Correlations												
		Pounds of Herbicide Applied	Pounds of Insecticide Applied	Pounds of Fungicide Applied	Other Pesticides							
Pounds of Herbicide Applied	Pearson Correlation Sig. (2-tailed)	1	.385	.184	011							
rppnod	N	23	23	23	23							
Pounds of Insecticide	Pearson Correlation	.385	1	042	288							
Applied	Sig. (2-tailed)	.070		.848	.183							
	N	23	23	23	23							
Pounds of Fungicide	Pearson Correlation	.184	042	1	.736*							
Applied	Sig. (2-tailed)	.401	.848		.000							
	N	23	23	23	23							
Other Pesticides	Pearson Correlation	011	288	.736**	1							
	Sig. (2-tailed)	.961	.183	.000								
	N	23	23	23	23							

**. Correlation is significant at the 0.01 level (2-tailed).

Table 1.2 Correlation Analysis on Herbicides, Insecticides, Fungicides, and Other Pesticides.

Following that, I wanted to know if there was any correlation between all my independent coefficients and Table 1.3 (Appendix) shows that there is a correlation between watermelons, other pesticides, and fungicides. Because of this, I decided to run four regression analysis, one with all the variables, the second with all the variables previously mentioned except for fungicides, the third with all the variables previously mentioned except for other pesticides, and the fourth with all the variables previously mentioned except for other pesticides, and the fourth with all the variables previously mentioned except for watermelons. The results in tables 2.1, 2.2, and 2.3 show that when those three variables were excluded in their respective equations, more coefficients had the signs change and the r-squared altered.

As seen in Table 2.1 and comparing it with the final regression model which is Table 2.4, it is seen that without fungicides, the adjusted r-squared slightly increased, three of the coefficients still had an unexpected sign, and the t-stats for all of them slightly changed.

Table 2.1

without fungicides								
SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.92334981							
R Square	0.852574872							
Adjusted R Square	0.750511322							
Standard Error	12058.14424							
Observations	23							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	9	10931136474	1214570719	8.35337269	0.000407999			
Residual	13	1890184951	145398842.4					
Total	22	12821321425						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	682905.3961	212370.0544	3.215638843	0.006760947	224107.7869	1141703.005	224107.7869	1141703.005
Pounds of Herbicide Applied	-450.2551553	167.5632211	-2.687076271	0.018647751		-88.25682441	-812.2534862	-88.25682441
Other Pesticides	651.597397	347.6631022	1.874220741	0.083546951		1402.677866	-99.48307202	1402.677866
Pounds of Insecticide Applied	1223.466649	295.7415855	4.136944918	0.001169415	584.5557973	1862.377501	584.5557973	1862.377501
CO2 emissions (metric tons per capita)	-21665.69395	8713.230695	-2.486528213	0.027272594	-40489.48444	-2841.903459	-40489.48444	-2841.903459
Almonds	-0.629907966	18.83605105	-0.033441615	0.973830435	-41.32272227	40.06290634	-41.32272227	40.06290634
Apples	9.064619711	4.332226245	2.092369881	0.056590532	-0.294586081	18.4238255	-0.294586081	18.4238255
Lemons	3127.464268	9329.075175	0.335238404	0.742793297	-17026.77733	23281.70587	-17026.77733	23281.70587
Pecans	94.37064698	94.18147196	1.002008622	0.334626377	-109.0960531	297.837347	-109.0960531	297.837347
Watermelon	-31.00223403	14.2887213	-2.16969968	0.049153767	-61.87113968	-0.133328391	-61.87113968	-0.133328391

Table 2.1 Regression Analysis on the coefficients Yield per Colony, Herbicide, Insecticide, Other Pesticides, CO² Emissions, Almonds, Apples, Lemons, Pecans, and Watermelons.

Table 2.2 shows the regression results without the other pesticides coefficient. When compared with Table 2.4 it is seen how the adjusted r-squared slightly decreases, three of the coefficients still have the unexpected signs and all of the t-stats slightly changed.

Table 2.2

without other pesticides								
SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.905631425							
R Square	0.820168278							
Adjusted R Square	0.695669393							
Standard Error	13317.65836							
Observations	23							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	9	10515641110	1168404568	6.587756022	0.00132516			
Residual	13	2305680315	177360024.3					
Total	22	12821321425						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	563391.3596	225299.7373	2.500630344	0.026557195	76660.86887	1050121.85	76660.86887	1050121.85
Pounds of Herbicide Applied	-462.6174728	194.9177518	-2.373398361	0.033721266	-883.7116744	-41.52327117	-883.7116744	-41.52327117
Pounds of Fungicide Applied	640.8476588	874.4914258	0.732823261	0.476672901	-1248.376208	2530.071525	-1248.376208	2530.071525
Pounds of Insecticide Applied	1167.111318	324.6361143	3.595137038	0.00326206	465.7776323	1868.445005	465.7776323	1868.445005
CO2 emissions (metric tons per capita)	-18155.59072	9485.133542	-1.914110185	0.07787693	-38646.97592	2335.79449	-38646.97592	2335.79449
Almonds	1.656360932	21.1312698	0.078384354	0.938715993	-43.99497202	47.30769388	-43.99497202	47.30769388
Apples	10.18748604	4.806335185	2.11959542	0.053860125	-0.195969843	20.57094193	-0.195969843	20.57094193
Lemons	2622.980654	10387.26635	0.25251886	0.804588738	-19817.344	25063.30531	-19817.344	25063.30531
	86.99025412	110.2761562	0.7888401	0.444354073	-151.2468973	325.2274056	-151.2468973	325.2274056
Pecans								

Table 2.2 Regression Analysis on the coefficients Yield per Colony, Herbicide, Fungicide, Insecticide, CO² Emissions, Almonds, Apples, Lemons, Pecans, and Watermelons.

Table 2.3 shows the regression results without the watermelons coefficient. This one causes major changes in the final regression model when it is removed. As seen below, instead of having three coefficients with unexpected signs, there are four and the t-stats are highly affected as well.

Tabl	le	2	.3

Without watermelons								
SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.894517603							
R Square	0.800161741							
Adjusted R Square	0.661812178							
Standard Error	14038.93089							
Observations	23							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	9	10259130878	1139903431	5.783623164	0.002448196			
Residual	13	2562190548	197091580.6					
Total	22	12821321425						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	552217.759	240168.7668	2.29929048	0.038709763	33364.68296	1071070.835	33364.68296	1071070.835
Pounds of Herbicide Applied	-485.6039659	204.4875798	-2.374735748	0.033637135	-927.372524	-43.83540777	-927.372524	-43.83540777
Pounds of Fungicide Applied	276.5069011	1099.121233	0.251570885	0.805305828	-2098.000161	2651.013963	-2098.000161	2651.013963
Other Pesticides	-19.88490073	294.096601	-0.067613501	0.947122168	-655.2419794	615.472178	-655.2419794	615.472178
Pounds of Insecticide Applied	1178.861321	343.7056004	3.429857761	0.004477989	436.3305148	1921.392127	436.3305148	1921.392127
CO2 emissions (metric tons per capita)	-17928.78389	10057.49231	-1.782629639	0.098001359	-39656.67505	3799.107259	-39656.67505	3799.107259
Almonds	-3.379130349	22.17542133	-0.152381788	0.881225436	-51.28621554	44.52795484	-51.28621554	44.52795484
Apples	9.853514633	5.091636467	1.935235301	0.075017981	-1.146297202	20.85332647	-1.146297202	20.85332647
Lemons	-602.3999062	10734.14234	-0.056119985	0.956099593	-23792.10456	22587.30475	-23792.10456	22587.30475
Pecans	75.27505065	116.2842332	0.64733669	0.528680116	-175.9417619	326.4918632	-175.9417619	326.4918632

Table 2.3 Regression Analysis on the coefficients Yield per Colony, Herbicide, Fungicide, Insecticide, Other Pesticides, CO² Emissions, Almonds, Apples, Lemons, and Pecans.

The results after running a regression without fungicides and other pesticides show how there is a slight increase in the adjusted r-squared with an increase of 0.02 and a decrease of 0.6 respectively. The coefficients other pesticides and insecticides still have the unexpected sign. Other coefficients were affected numerically and their value and t-stats changed. Because of these reasons, I decided to include all the five crops I mentioned and the other five factors that cause colony collapse disorder. My equation is an OLS model.

Model Results:

Table 2.4

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.924362001							
R Square	0.85444511							
Adjusted R Square	0.733149368							
Standard Error	12470.65233							
Observations	23							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	10	10955115392	1095511539	7.044312492	0.001174918			
Residual	12	1866206033	155517169.4					
Total	22	12821321425						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	673572.4257	220917.5189	3.048976962	0.010103906	192234.5012	1154910.35	192234.5012	1154910.35
Pounds of Herbicide Applied	-426.203567	183.8018402	-2.318821001	0.038850162	-826.6733745	-25.73375952	-826.6733745	-25.73375952
Pounds of Insecticide Applied	1229.53135	306.2485885	4.01481475	0.001715374	562.2729965	1896.789704	562.2729965	1896.789704
Pounds of Fungicide Applied	-403.6280815	1027.911566	-0.3926681	0.701450398	-2643.254989	1835.998826	-2643.254989	1835.998826
Other Pesticides	758.7238826	451.3424619	1.681038118	0.118576089	-224.6668639	1742.114629	-224.6668639	1742.114629
CO2 emissions (metric tons per capita)	-21256.39483	9071.394707	-2.343233374	0.037166752	-41021.266	-1491.523656	-41021.266	-1491.523656
Almonds	0.74956399	19.79466769	0.037866965	0.97041642	-42.37931194	43.87843992	-42.37931194	43.87843992
Apples	9.326282849	4.529714889	2.05891167	0.061889792	-0.543118067	19.19568376	-0.543118067	19.19568376
Lemons	3669.706304	9746.544015	0.376513593	0.713108024	-17566.18884	24905.60145	-17566.18884	24905.60145
Pecans	80.82978386	103.3275756	0.782267303	0.449218735	-144.3016635	305.9612312	-144.3016635	305.9612312
Watermelon	-32.91301738	15.55811876	-2.115488247	0.055982555	-66.81124613	0.985211375	-66.81124613	0.985211375

Table 2.4 Regression Analysis on the coefficients Yield per Colony, Herbicide, Fungicide, Insecticide, Other Pesticides, CO² Emissions, Almonds, Apples, Lemons, Pecans, and Watermelons.

Equation:

673,572.43THY = -426.20H + 1229.53I - 403.63F + 758.72OP - 21,256.39COEM + 0.75AL + 9.33AP + 3669.71LEM + 80.83PEC - 32.91WA t-Stats: -2.32 4.01 -0.39 1.68 -2.340.04 2.06 0.38 0.78 -2.11 $R^2 = 0.854$ $\bar{R}^2 = 0.733$ SE = 12,470.65Significance F = 0.0012Degrees of Freedom = 22Observations = 23Coefficients: THY = Total Honey Yield in thousands of pounds produced in the United States.

H = Millions of pounds of herbicides used in the United States.

I = Millions of pounds of insecticides used in the United States.

F = Millions of pounds of fungicides used in the United States.

OP = Millions of pounds of other pesticides used in the United States.

COEM = Carbon Dioxide emissions in metric tons per capita in the United States.

AL = Millions of pounds of almonds produced in the United States.

AP = Millions of pounds of apples produced in the United States.

LEM = Millions of pounds of lemons produced in the United States.

PEC = Millions of pounds of pecans produced in the United States.

WA = Millions of pounds of watermelons produced in the United States.

For my final model, I have three unexpected signs in the coefficients I, OP, and WA. For the coefficients, I (Millions of pounds of insecticides used in the United States) and OP (Millions of pounds of other pesticides used in the United States), I was expecting a negative sign because according to my theory, the more use of insecticides and other pesticides, which are causes colony collapse disorder, there would be a decrease in bee population, meaning that there would be less honey produced per year. Surprisingly, the watermelon coefficient was negative when it should be positive. I was expecting that if there were more watermelons produced per year, since they are a crop bees pollinate, it would have a positive effect on honey yield production.

The results on the regression model reveal that the use of insecticides and pesticides as well as the production of almonds, apples, lemons, and pecans will have a positive effect on the honey yield. The other coefficients which are watermelons, carbon dioxide emissions in metric tons per capita, and fungicides and herbicides use, have a negative impact on honey yield.

After I analyzed the results, I wanted to explore more and think of why I had those relationships and why my hypotheses were not as I expected. I looked back in my data and realized that I had the specific number of honey bee stocks per state. A bee stock is defined, according to Dr. David Tarpy, a professor and researcher of North Carolina State University, as "a loose combination of traits that characterize a particular group of bees. Such groups can be divided by species, race, region, population, or breeding line in a commercial operation. Many of the current stock' in the United States can be grouped at one or more of these levels" (Tarpy, 2005). Based on this information, I wanted to find what relationship does the use of insecticides and honey bee stocks have. I made a graph which can be seen in Table 3.1 which shows the relationship between bee stocks and the use of insecticides.

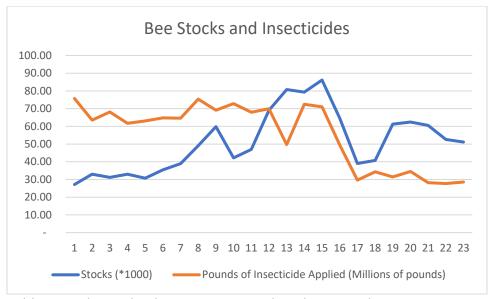


Table 3.1 Relationship between Bee Stock and Insecticide use

The numbers in the horizontal axis are the years of data starting from 1986. It is interesting to see that both have a positive relationship when it should be expected to have a negative one. Data seems to show that when there is more insecticides applied to crops, the amount of honey bee stocks increases and these was seen in the years 7,8, 13, and 14. The most significant year was year 15 when both had a sudden drop and it raises many questions. Do they really have a positive relationship? Is one dependent on the other? Are the claims that insecticides are killing honey bees true? What is the real effects of insecticides on different types of honey bees? Many of these questions have yet to be answered and research is still being done to find out how different insecticides affect different types of honey bees. Based on this relationship, I wanted to see what was the relationship between all of the fungicides, pesticides, insecticides, herbicides, and bee stocks which is shown in Table 3.2.

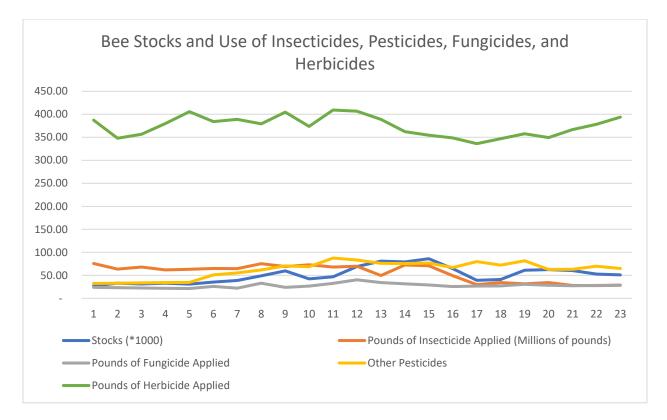


Table 3.2 Relationship between Bee Stock and Use of Insecticides, Pesticides, Fungicides, and Herbicides.

The numbers in the horizontal axis are the years of data starting from 1986. As seen in the graph, fungicide remains constant throughout the years, never surpassing the 50 million pound mark. Other pesticides also remain constant between 100 million pounds and 50 million pounds with a slight decrease in the last years. Insecticides was mentioned in Table 3.1 and the relationship is the same in this graph, now being less than 50 million pounds used per year. The only one that is being used in a significant amount is herbicides with being at approximately 400 million pounds used per year. As it was seen in the model, herbicides has a strong negative coefficient and does affect the yield per colony, but how does it affect the honey bee stocks? Table 3.3 shows the direct relationship between honey bee stocks and the use of herbicides per

year.

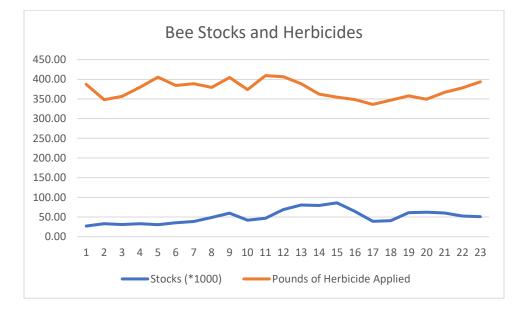


Table 3.3

Table 3.3 Relationship between Bee Stock and Herbicide use.

It can be seen by looking at the graph that bee stock and herbicides have an inverse relationship. When the use of herbicides declines, bee stocks have a slight increase. Is this because herbicides have a direct impact on the honey bees? A factor that could be taken into consideration is that the less use of herbicides, the more wild plants will grow and be available for bees to pollinate. The more plants available mean that bees that were not present in the monitored areas are now likely to come back to pollinate those areas.

It is interesting to see what relationship do bee stocks have with many of the variables that I used in my model. There are thousands of different species and they are all affected in a different way with the use of chemicals and toxins. More research is needed to help determine which specific chemicals and toxins affect which specific species. As to what comes next it is hard to determine. I am really excited to try different methods and gather more data to make a model that is accurate and can help determine the value of honey bees. It is impossible to determine a model now because there is insufficient data but eventually I would like to get a research team and partner with the author of the economic thesis that also made some equations and see if we can eventually determine how valuable honey bees are for the U.S. economy and the rest of the world. I found the research was worthwhile and satisfying. I invested many hours into this research project and it was in a topic of my interest. I wanted to show people that there is a way in which we can measure what affects honey productivity and put into perspective how important honey bees are for humanity. If I had more time, I would have stayed in contact with the author of the economic thesis and partnered with him and other biologists to gather up data and make a more precise and functioning model. Now, it is something that I want to accomplish in my future.

Appendix

Without Withou	Pears Preach Phatchlos Strawherries Walnuts	Prans Prezess Prezest Strawherries Strawherries	Pears Pecass Pitaachos Siteavherries	Pears Pears Pleachies Strewherries	Pears Pecars Pistachios Strawberries	Pears Pecans Pistachios	Pears Pecans Pistachios	Petrs	Peurs	<u> </u>					Peaches		Oranges	2	10,000	Vila		Macadamias		Lemons		Hazelnuts		Grapes		Grapefnuit		Cherries		Cantaloupe		Apricots		Appres		Almonds	
Pearson Cartelation Sig. (2-ai)ed) Pearson Cartelation Sig. (2-ai)ed) Ng. (2-ai)ed) Ng. (2-ai)ed) Sig. (2-ai)ed) Ng. (2-ai)ed) N	Perron Correlation Sig: (2-sui-ed) N Pearson Correlation Sig: (2-sui-ed) N Sig: (2-sui-ed) N	Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation	Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N	Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sio. (2-tailed)	Pearson Correlation Sig. (2-tailed) N Pearson Correlation	Pearson Correlation Sig. (2-tailed) N	Pearson Correlation	Ì	×	Sig. (2-tailed)	Pearson Correlation	Sig. (2-tailed) N	Pearson Correlation	N	Pearson Correlation	N N	Pearson Correlation	N	Sig. (2-tailed)	N	Sig. (2-tailed)	Pearson Correlation	Sig. (2-tailed)	Pearson Correlation	Sig. (2-tailed) N	Pearson Correlation	N N	Pearson Correlation	N	Sig. (2-tailed)	Ng. (2-tailed)	Pearson Correlation									
880	30	m.	.947	30	8	.790	00.	.906	30	.102	20Ľ	0E 500	320	00 Duri	889	30	332	30	.146	10	.074	-330	397	025	0E 500	.495	30	.,108	00	.836	00 000	.879	.002 30	-538	30	590"	30	082	30		Almonds
30 0E	30	X21	043	30	.703	073	0E 0EX	041	30	140	%L	0E0 0E0	.422	.100	057	0E 40E	.192	30	E96 2001	01	577	.106	.154	267	.657 30	280	.767 30	056	0E	.189	390	026	315	190	30	25T	30	-	30	082	Apples
-113		30	- 593	30	.092	313	10	583"	30	08Ľ	.166	30	.604	30	632	30	142	30	619	30	148	271	205	.047	219 30	231	.014 30	389*	30		00 600	-468	.174	255	30		30	.054	30	-590	Apricots
	UI	30	-561	30	.045	- 368	30	-,415	30	900	- 182	301	278	00	.426	30		30	000 [.]	30	000	.605	00 605	.120	_514 30	124	.162	262	.004	.206	.024 30	-411	30		30	255	30	-190	30	-538 ^{°°}	Cantaloupe
-104		30	.872	30	8	.616.	30	.780	30	.217	212	0E 58E	164	30	-611	0E 0407	-315	30	427	30	121	188	342	.180	.028	402	30	.708	30	.799	30		.024 30	-411	30	468		026		be let	Cherries
	047	00 000	872**	30	200	.550"	3 00	843**	30	.432	149	30	.470"	30	.619.	30		30	.126	06	.140	276	.794	.050	016 300	-385	30	.670	38	1	30	.799**	.004 30	-305	30		30	117	30 Jun	-836"	Grapefnuit
	300	30	.784	30	8	.710	30	.807"	30	.065	142	.512 30	125	30	.460	30	089	30		30	787	051	50	.043	30	517"	30		30		30	.708	.162	262	30	-389	30	056	30 J	307"	Grapes
	_384	.004 30	515"	30	8		30	431	30	.012	.453	30	346	30	309	0E 1751	.120	30		101		250.	396	025	30	1	30	517"	01 010	385	30	.402	514 30	-,124	06	231	30	.085	30	495"	Hazelnuts
	288	.710	100	30	909	.090	30	.137	30	.809	.046	.147	272	30 20C	-110	30	245	30	7217	30	55	tit.	5	1	0E 968	025	30	540	.794	.050	142 30	.180	30	.120	30	.047	30	167	0E	-025	Lemons
	418	30	320	30	.122	288	90 670,	326	30	.148	177	30	.99E	00 2007	358	30	572"	30	100 [°]	30		1	185	113	.772 30	.055	.787	051	.140	.276	30	188	00 200	-529	30	271	30	.106	.0E	-330	Macadamias
		.196	243	30	283	203	30	120	30	.923	810	30	217	-10L	.268	30	.749	30		, 30	00.		.172	.256	30	.181	.874 30	000	.126	.286	427	-151	30	.769	0E	.095	30	009	-140 30	-272	Melons
	547"	30	.390	30	549	114	30	304	30	.481	.134	30	466"	00 D10	.461	30		30	000 661	30	.00		.193	.245	.527 30	.120	.641 30	089	30 100	955	30	-315	30	.670	30	342	30	100	30 20	-332	Oranges
	100	30	.702	30	00	-513"	300	-716"	30	105	195	30	.418	30		30	.461	30	-151	 J0	.052	355	262	110	30 960	309	J0	.460	ж 8	.679	30	.611	010 10	.426	30		30	057	30	-688"	Peaches
242	225	30	-315	30	223	229	.161	262	30	.654	86	30	1	30	.418	30	.466"	30	.088	30	047	%	.147	272	30	346	.512 30	125	30	470"	00 286	164	.138	278	30	.106	30	42	30 201	320	Pears
	.180	0E	901	30	.10	299	180.	121	30			30	280.	0E 10F	-,195	00 1040	.114	30	.925	00	148	-177	808	.046	.012 30	453	305	342	.432	-,149	217	212	90E	182	00 2007	.166	30	365	.102	20L	Pecans
	122	30	.892	30	8	.715	30		30	180.	121	.161	262	30	-716	0E 501'	304	30		30	970	326	470	.137	.017 30	.431	30	.807	8 8	.843	30	.780	.023 30	-415	30	-583	30	.041	30 JUU	.908	Pistachios
18/	120	30	.719	30			8 8	.715"	30	.108	299	30	-,229	0E tonr	-513"	0E 445	-114	30	-183	30	12	-,288	10. 10.	.090	00 100	566"	30	.710"	30	550"	96 00	.616.	.045 30	- 368	06 2407	-313	30	-073	30 Jun		Strawherries
	.139	30		30	8	.719	8	.892"	30	070	907	30	-315	30	-702	30	390	30	-196	05	.085	320		100	0f	515.	30	.784**	30	-872	30	.872	30	561**	30	.593 ^{°°}	30	043	30	.947	Walnuts
		.464	50L			.050	24	12		.141	.18	202	225	.30	10	30	547		000 100	8	a	.418	.123	288	30	_184	30	30	200	04	06 30	.16	30	202	30			345			Watermelon

Table 1.1 Correlation Analysis between 18 crops.

References:

- "CO2 emissions (metric tons per capita)." CO2 emissions (metric tons per capita) | Data. World Bank, 2017. Web. 10 Apr. 2017. http://data.worldbank.org/indicator/EN.ATM.CO2E.PC?end=2013&locations=US&nam e_desc=false&start=1984>.
- David Tarpy, 2005. The Different Types of Honey Bees. AG-645, NC State University, Cooperative Extension
- United States Department of Agriculture. *Honey National Agricultural Statistics Service*. Publications from September 24 1976 to present., n.d. Web. 10 Apr. 2017. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1191